If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X/X-8+6/X-4=X^2/X^2-12X+32
We move all terms to the left:
X/X-8+6/X-4-(X^2/X^2-12X+32)=0
Domain of the equation: X!=0
X∈R
Domain of the equation: X^2-12X+32)!=0We add all the numbers together, and all the variables
X∈R
X/X+6/X-(X^2/X^2-12X+32)-12=0
We get rid of parentheses
-X^2/X^2+X/X+6/X+12X-32-12=0
Fractions to decimals
6/X+12X-32-12+1+1=0
We multiply all the terms by the denominator
12X*X-32*X-12*X+1*X+1*X+6=0
We add all the numbers together, and all the variables
-42X+12X*X+6=0
Wy multiply elements
12X^2-42X+6=0
a = 12; b = -42; c = +6;
Δ = b2-4ac
Δ = -422-4·12·6
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{41}}{2*12}=\frac{42-6\sqrt{41}}{24} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{41}}{2*12}=\frac{42+6\sqrt{41}}{24} $
| 4n/9+7=11 | | 6(z+32)=-72 | | 9+2x+4=6+7x | | –2x–6=6x+ | | 1/2x=212+x | | 1.8(h+3)-1.3(2-h)=1 | | 3x-11=-4xx11 | | 19y+33=0 | | x*2x=350 | | 2/3n-7=5 | | 1/3c=3/;c=3/4 | | (x^2-4)=100 | | 17-6x=-8(x+2)+3 | | X2=15x-34 | | 17-6x=8x+16+3 | | x-24=58;=82 | | 35=8m-5 | | P(x)=-x^2+10x-4 | | 6(20/3-5y/3)+5y=-10 | | 3+3+4x15=67 | | 18x×x×x-120x×x+105x+25=0 | | -7y+2=702 | | 10=2c-4 | | (w+5)w=33 | | 16=3b-2 | | 7y−5=5y+13 | | 1/3y=12=19 | | 24x-8=21x+13 | | 6(2x)-3=17x+2 | | -16t+105t^2-34=0 | | 12(6g+2)=12 | | 1/2(4x-5)=2/3(6x+6) |